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We show that at the onset of a cyclic fold bifurcation, a birhythmic medium composed of glycolytic
oscillators displays turbulent dynamics. By computing the largest Lyapunov exponent, the spatial correlation
function, and the average transient lifetime, we classify it as weak turbulence of a transient nature. Virtual
heterogeneities generating unstable fast oscillations account for the transient turbulence. In the presence of a
wave number instability, unstable oscillations can be reinjected, leading to stationary turbulence. We also find
similar turbulence in a cell cycle model. These findings suggest that weak turbulence may be universal in
biochemical birhythmic media exhibiting cyclic fold bifurcations.
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I. INTRODUCTION

In studies of chemical turbulence in reaction diffusion
systems near a Hopf bifurcation, a reduction of the model to
the complex Ginzburg-Landau equation(CGLE) is very use-
ful [1,2]. First, it allows one to determine a parameter set in
the model leading to turbulence without carrying out exten-
sive simulations[3]. Second, the detailed knowledge of the
CGLE’s dynamics can be very helpful[4–8], because math-
ematical models from different disciplines displaying dy-
namics near a Hopf bifurcation obey the same qualitative
dynamics of the CGLE[9].

However, the CGLE alone is insufficient for a qualitative
description of realistic models in a neighborhood of a Hopf
bifurcation, when other bifurcations occur nearby[10,11].
For example, near a supercritical Hopf bifurcation point, an-
other stable limit cycle may exist, so that, depending on ini-
tial conditions, oscillations with two different frequencies
and amplitudes are possible. Such a situation, called birhyth-
micity, is a characteristic feature of a number of well-known
models of biochemical oscillations[14,15]. For these sys-
tems, the CGLE cannot be used without appropriate modifi-
cations. Often, the best way to approach these problems is by
simulations of the original models[11,12].

To the best of our knowledge, little is known about turbu-
lence in birhythmic media. Intuitively, in a regime of strong
wave number instability, birhythmicity should not be a fac-
tor. Therefore, turbulence in homogeneous birhythmic media
and in coupled limit cycle oscillators should have similar
characteristics. In the absence of wave number instability,
high-frequency oscillations are supposed to suppress slow
oscillations and restore uniform oscillations. But at the onset
of a cyclic fold (CF) bifurcation in birhythmic media of a
biochemical origin, high-frequency oscillations may be un-
stable. Thus, a complete suppression of slow oscillations
may not be achieved in these systems. On the contrary, if
unstable oscillations emerge persistently, complex spatiotem-
poral motions are possible.

The goal of this work is to show that near cyclic fold
bifurcations in birhythmic media, virtual heterogeneities cre-

ating unstable oscillations can lead to a peculiar turbulence,
intermittency of small- and large-amplitude oscillations. We
will first compute complex spatiotemporal behavior in a bi-
rhythmic medium composed of glycolytic oscillators. By cal-
culating the maximal Lyapunov exponent, the spatial corre-
lation function, and the average transient lifetime, we will
provide evidence that this behavior is weak transient turbu-
lence. In the presence of a wave number instability, transient
turbulence may become stationary. Mathematically, the insta-
bility of the faster oscillations is a result of a CF bifurcation
driven by the terms representing enzymatic regulations, sug-
gesting that weak turbulence may be common in biochemical
birhythmic media exhibiting CF bifurcations. As further evi-
dence, we demonstrate weak turbulence in a cell cycle
model. A biological system where weak turbulence might
possibly be found is presented in the closing section.

II. BIRHYTHMIC MEDIUM OF GLYCOLYTIC
OSCILLATORS

Let us introduce a birythmic medium composed of glyco-
lytic oscillators:

da

dt
= n +

sig
n

Kn + gn − sf + DaDa, s1d

dg

dt
= Qsf − ksg −

Qsig
n

Kn + gn + DgDg, s2d

f =
as1 + ads1 + gd2

L + s1 + ad2s1 + gd2 .

In Eqs.(1) and(2), a andg represent dimensionless sub-
strate and product concentrations of glycolytic reactions;K,
n, n, si, s, ks, L, andQ are parameterssallù0d. For conve-
nience, we assumeQ;1 throughout this paper.Da and Dg

are diffusion constants for the substrate and product. We de-
fine time and space units in Eqs.(1) and (2) in sec and cm,
respectively. WhenDa=0, Dg=0, andsi =0, Eqs.(1) and(2)
are called the glycolytic oscillator[14]. The termsig

n/ sKn

+gnd represents substrate recycling that drives birhythmicity.
Recently, in Ref.[16], Eqs.(1) and (2) were shown to sup-*Electronic address: dbattogt@vt.edu
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port multiple wave fronts. Our concern in this paper is a
different parameter region where irregular spatiotemporal
motions develop.

A phase plane analysis of Eqs.(1) and(2) shows that the
mechanism of birhythmicity is two regions of negative slope
in the product nullcline[14]. A convenient way to illustrate
birhythmicity is with a bifurcation diagram. We used a well-
known software packageAUTO [17] for bifurcation analysis
of the local model[Da=Dg=0 in Eqs. (1) and (2)]. Solid
lines in Fig. 1 show stable steady states, and dashed lines
show unstable steady states. Stable limit cycles are shown by
solid symbols, unstable limit cycles by open circles. Solid
circles represent small-amplitude oscillations with high fre-
quencies. Large-amplitude oscillations with lower frequen-
cies are shown by solid diamonds in Fig. 1. A Hopf bifurca-
tion point HB is located atsi,cr<1.282. There are two CF
bifurcations in Fig. 1, where stable limit cycles are replaced
by unstable ones. Between these two CF points, which occur
at si,CF1<1.077 andsi,CF2<1.183, two stable limit cycles
coexist. Therefore, depending on initial conditions, one of
the limit cycles will be selected in simulations of the glyco-
lytic oscillator with substrate recycling.

A general mechanism of turbulence in oscillatory reaction
diffusion systems is wave number instability—i.e., instability
of uniform oscillations against phaselike fluctuations[1]. In
Eqs.(1) and(2), there are two different uniform oscillations
that might undergo wave number instability. We want to
provide evidence that these oscillations are stable against
phaselike fluctuations for the parameters in Fig. 1. For the
fast, uniform oscillations which originate from the Hopf bi-
furcation point shown by solid circles in Fig. 1, the stability
condition can be obtained by reducing Eqs.(1) and(2) to the
CGLE

Ȧ = s1 + ic0dA − s1 + ic2duAu2A + s1 + ic1dDA. s3d

In Eq. (3), A is the complex amplitude, andc0, c1, andc2 are
real parameters. The CGLE has a uniform oscillatory solu-
tion, A=expfisc0−c2dtg, which is stable if the condition 1
+c1c2.0 holds. In the Appendix, we calculatedc0, c1, and
c2 corresponding to Eqs.(1) and (2). Our results show that
the uniform oscillations are stable for the parameters used in
Fig. 1, or anyDa.0 andDg.0. For Da=Dg we find that

c1=0. Hence, the parameter region we are interested in is
deep inside the Benjamin-Feir stability region given by 1
+c1c2.0. Although the CGLE is valid only near theHB
point, it is likely that the uniform oscillations will remain
stable until the the next bifurcation in the system—i.e.,CF1

in Fig. 1 [9]. Next, consider the uniform oscillations with
low frequencies. Unlike the case of fast oscillations, no ana-
lytic approach is available in this case. Note that oscillations
shown by solid circles and diamonds in Fig. 1 occur at the
same parameters. Therefore, it is rather unlikely that the slow
oscillations undergo wave number instability, contrary to the
fast ones. Thus, we can assume that uniform, slow oscilla-
tions are also stable.

It is known that strong perturbations can switch oscilla-
tions from one stable orbit to another in the glycolytic model
with substrate recycling[14]. Therefore, even if both uni-
form oscillations in Eqs.(1) and (2) are stable against wave
number instability, strong perturbations can excite the system
by switching the oscillations. This kind of excitability, how-
ever, will not lead to turbulence; in the parameter interval
fsi,CF1,si,CF2g, the fast oscillations will suppress the slow
ones as time progresses. But forusi −si,CF1u!1 where the
fast oscillations become unstable, it is apparent that a com-
plete suppression of slow oscillations is impossible. Here,
because of complex interactions between stable, slow and
unstable, fast oscillations, interesting spatiotemporal dynam-
ics might develop. Therefore, we carried out a detailed nu-
merical study in the neighborhood ofCF1.

III. WEAK TURBULENCE IN A BIRHYTHMIC MEDIUM
OF GLYCOLYTIC OSCILLATORS

For numerical integrations of Eqs.(1) and(2) in one spa-
tial dimension, we used the fourth-order Runge-Kutta
method. Diffusion terms were approximated by the finite-
difference method. Numerical parameters aredx=0.005 cm
anddt=0.05 s. The system size is defined asl =Ndx, where
N is the number of spatial grid points. In this paper we
present results for periodic boundary conditions, but we also
tested the main results with no-flux boundary conditions. We
also tested selected examples with smaller values ofdx and
dt for fixed l. Our simulations show that Eqs.(1) and(2) are
sensitive to initial conditions. By choosing initial conditions
as small perturbations of uniform, slow oscillations with
large amplitudes, we found that these oscillations are stable
for si ,si,CF2. But near and to the left ofCF1, uniform, fast
oscillations with small amplitudes are found to be unstable.
They spiral out from unstable orbits towards the orbit of
stable, large-amplitude oscillations. For strong perturbations
near theCF1 bifurcation point, we found spatiotemporal ir-
regular motions in Eqs.(1) and (2).

Figure 2 shows a gray scale plot of spatiotemporal dy-
namics in Eqs.(1) and (2). Oscillations between the white
and black colors show large-amplitude oscillations displayed
by gsx,td. There are also oscillations with higher frequency
and smaller amplitude in Fig. 2. Because the latter ones are
unstable, they cannot suppress large-amplitude domains. Al-
though uniform, large-amplitude oscillations are stable
against small fluctuations, phase slips created by strong ini-

FIG. 1. A bifurcation diagram of Eqs.(1) and (2). HB marks a
Hopf bifurcation point,CF1,2 mark cyclic fold bifurcations. Param-
eters aren=0.25 s−1, n=4, K=11.5, s=11 s−1, ks=0.05 s−1, and
L=3 400 000.
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tial perturbations cannot be eliminated as time progresses. As
a result, spatially nonuniform distributions of concentrations
are seen at given time moments, Fig. 3. On the phase plane,
these nonuniform distributions generate motions attracted by
unstable orbits around the inner cycle shown in Fig. 4. We
found that such unstable orbits act as a weak, virtual hetero-
geneity emerging randomly. They cannot entrain the bulk
oscillations, but in their presence, phase slips cannot be
eliminated. Instead, persistent spatiotemporal irregular mo-
tions develop.

To characterize the irregular motions in Fig. 2, we calcu-
lated the maximum Lyapunov exponentllyap

max in
2N-dimensional phase space[18]. First we made a very long
run of Eqs. (1) and (2) to confirm that the turbulence is
stationary. Then, by using the same initial conditions, we
simulated Eqs.(1) and (2) and its linear system for compu-
tation of llyap

max for T1=23105 s. We found that the largest
Lyaponov exponent is positive and small,llyap

max<2310−3.
We also calculated a two-point correlation functionCsxd
=kgsx0,tdgsx0+x,tdl, wherek¯l stands for an average over
space and time[19]. Figure 5 shows thatCsxd<const at
small values ofx, indicating strong local coupling and an
absence of short waves. A power-law decay of the correlation
function at intermediate values ofx implies the presence of
chaotic motions. We found that the slope isk<−0.15. We

also found no significant variations ofk and llyap
max with

changes ofsi and l. The small values ofk and llyap
max.0

suggest that spatiotemporal irregular motions shown in
Fig. 2–4 can be characterized as weak turbulence.

We found that in Eqs.(1) and (2), stationary irregular
motions can develop only for certain initial conditions and
system sizes. In simulations with different initial conditions
and system sizes, we observed sudden collapses of the tur-
bulent dynamics. The collapse of turbulence in Eqs.(1) and
(2) means a complete suppression of small-amplitude oscil-
lations. Thus, we defined the transient lifetime of turbulence,
tp, as the time interval from initial conditions to the moment
when all oscillators come within a distanced of the orbit of
stable, slow, large-amplitude oscillations. In our simulations
we usedd=0.03. Following Ref.[13], we plot an average
transient lifetimetp versus the system sizel in Fig. 6. Here,
each solid circle is an average of 20 simulations with differ-
ent initial conditions. Figure 6 shows that, as the system size
increases,tp grows exponentially.

For some initial conditions, whenl is close to 2 cm, the
turbulent solution does not collapse. The inset in Fig. 6
shows the number of cases, among 20 different simulations,
when a collapse of turbulence has not occurred byT=106 s.
(These cases were not included in calculations of the solid
circles in Fig. 6.) We continued two cases in the inset(at l

FIG. 2. Space-time pattern ofg in a weak turbulent regime of
Eqs. (1) and (2). The space and time spans arel =1.75 cm andT
=53103 s. The pattern was obtained by recordinggsxd with a time
interval t=5 s. Da=Dg=1310−5 cm2/s andsi =1.065 s−1. Other
parameters are the same as in Fig. 1.

FIG. 3. Snapshots of spatial distributions ofa at two different
time moments. Parameters are the same as in Fig. 2.

FIG. 4. A phase plane view. The outer cycle shows the orbit of
stable uniform oscillations with a periodt=300 s. The inner cycle
shows the orbit of small-amplitude, fast oscillations with a period
t=290 s atsi =1.08 s−1. With the decrease ofsi, the inner cycle
disappears, but it still can attract neighboring trajectories, creating a
virtual, chaotic heterogeneity in Eqs.(1) and (2). The solid lines
show spatial distributions of oscillators projected onto the phase
plane at two different time moments. Parameters are the same as in
Fig. 2.

FIG. 5. A log-log plot of the spatial correlation function. Param-
eters are the same as in Fig. 2.
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=1.75 cm) up to T=108 s and did not observe a collapse of
motions near the inner cycle in Fig. 4.

Numerical experiments indicate that if virtual heterogene-
ities reside sufficiently far from each other, a stationary pat-
tern is possible in the intervalsi P f1.055,1.075g. Figure 7
gives an example of such a pattern. Here virtual heterogene-
ities are located from each other by distances between 0.5
and 1 cm. Note that these quasiperiodic structures are not
related to a Turing instability, which emerges due to differ-
ences in diffusion coefficients. Unstable oscillations at the

onset of a CF bifurcation are the instabilities leading to these
structures. The cellular structures in Fig. 7 are breathing be-
cause of the unstable oscillations. Numerical results show
that as the system size increases, the cells breath coherently.

A collapse of turbulence can be prevented if there is a
reinjection mechanism for the unstable oscillations generated
by the virtual heterogeneities. Naturally, wave number insta-
bility can be such a mechanism. Using our calculations in the
Appendix, we simulated Eqs.(1) and (2) for parameters
when the corresponding CGLE displays phase instability and
found stationary weak turbulence forus−si,CF1u!1.

IV. WEAK TURBULENCE IN A CELL CYCLE MODEL

In Sec. III, we demonstrated that theCF1 bifurcation point
is crucial for turbulence in Eqs.(1) and(2). Mathematically,
the term representing substrate recycling drives CF bifurca-
tions. In models of biochemical oscillations, terms represent-
ing enzymatic activities naturally arise. As an enzyme can
quickly switch from being active to inactive and back again,
ideal conditions for CF bifurcations exist in these models.
Therefore, other biochemical reaction diffusion models may
also display the weak turbulence discussed in the previous
section. As an example, consider a three-variable model of
the budding yeast cell cycle:

dX

dt
= msk1 + k2Td − sk3 + k4Y + k5ZdX + DXDX, s4d

dY

dt
=

sk6 + k7Zds1 − Yd
J1 + 1 −Y

−
sk8m+ k9XdY

J1 + Y
+ DYDY, s5d

dZ

dt
= sk10 + k11Xd − k12Z + DZDZ, s6d

T = GsX,P,J2,J2d, s7d

Gsa,b,c,dd =
2ad

b − a + bc+ ad+ Îsb − a + bc+ add2 − 4adsb − ad
, s8d

where the transcription factorT for X is given by the
Goldbeter-Koshland functionG [14]. X, Y, andZ are dimen-
sionless variables andm is a dimensionless parameter. Time
and space units in Eqs.(4)–(8) are given in min and cm,
respectively.

WhenDX=DY=DZ=0, Eqs.(4)–(8) are a reduced version
of a budding yeast cell cycle model[20,21]. Here,X repre-
sents the concentration of cyclin-dependent protein kinase
(CDK): Y andZ are concentrations of two different anaphase
promoting complexes(APC), APC/Cdh1 and APC/Cdc20,
respectively. In Eqs.(4) and(5), m represents the cell’s mass,

which will be used as a primary bifurcation parameter. Equa-
tions (4)–(8) display CF bifurcations as shown in Fig. 8. For
smallm, Eqs.(4)–(8) also display saddle node bifurcations, a
feature universal in cell cycle models[15,20]. Here, our con-
cern is the neighborhood ofCF1 in Fig. 8. It is worth men-
tioning that with the increase of parameterk2, theCF1 bifur-
cation point shifts to largerm, and the distance between the
right saddle node bifurcation and theCF1 bifurcation points
increases[21].

There are no experimental measurements of diffusion co-
efficients for CDK and APC factors. But it is known that the

FIG. 6. Average transient lifetime versus the system size. The
inset shows the cases when a collapse of turbulence has not oc-
curred byT=106 s. Parameters are the same as in Fig. 2.
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diffusion coefficient of average-sized proteins in cytoplasm
is approximately 10−4cm2/min or smaller [22,23]. As our
goal is a demonstration of weak turbulence in a representa-
tive model of biochemical oscillations, we chooseDX, DY,
andDZ arbitrarily, subject to this upper bond. For simplicity,
we assumeDZ=0.

For simulations of Eqs.(4)–(8) we used the same method
as in the previous section withdt=0.05 min,dx=0.005 cm.
We found numerically that for strong perturbations, Eqs.
(4)–(8) display weak turbulence, Fig. 9. Typically, forDX
øDY, we found transient, weak turbulence. WhenDX!DY,
numerical experiments indicate stationary turbulence. For in-
stance, we simulated Eqs.(4)–(8) up to T=107 min for m
=3, DX=6310−7 cm2/min, DY=10−4 cm2/min, DZ=0, and
l =1.28 cm and found stationary turbulence for a number of
different initial conditions. There were no qualitative
changes in the weak turbulence when theCF1 point is lo-
cated away from the saddle node bifurcation, indicating that
for the origin of weak turbulence in Eqs.(4)–(8), the saddle
node bifurcation point is not important.

V. DISCUSSION

We have shown in this paper that two representative
mathematical models of biochemical oscillations exhibiting
birhythmicity—glycolytic and cell cycle models—display

weak turbulence(intermittency of large- and small-amplitude
oscillations). We provided evidence that unstable oscillations
near cyclic fold bifurcations are the mechanism of transient
turbulence in birhythmic media. In the presence of wave
number instability, weak turbulence is stationary.

Recently, Stichet al. [24,25] proposed an amplitude
model for birhythmic media. An interesting question is
whether the weak turbulence we discussed in this paper can
be found in their model? First, let us mention two important
differences between our models and the amplitude model of
birhythmic media. In our case, a cyclic fold bifurcation is
crucial for turbulence, but the amplitude model describes a
pitchfork bifurcation of limit cycles. Second, both fast and
slow oscillations in the amplitude equation are smooth, but
in our case, the slow oscillations are strongly anharmonic.
Besides these differences, it is well known that if phase slips
develop, the CGLE generates defects[26]. Thus, these facts
indicate that instead of intermittency of small- and large-
amplitude oscillations, defect turbulence is likely in the am-
plitude model of birhythmic media. On the other hand, as far
as generic patterns in birhythmic media are concern, the cell
cycle model displays target patterns reminiscent of autono-
mous pacemakers found in the amplitude model[24,25].

To date, there is no experimental evidence of weak turbu-
lence in glycolysis or in the cell cycle. Our results are pure
theoretical predictions of mathematical models. The system
sizes we simulated are much larger than the typical size of a
yeast cells10−3 cmd. Therefore, weak turbulence is not ex-
pected in yeasts. Interestingly, some slime molds grow as
syncytial plasmodia(many nuclei in a common cytoplasmic
pool) that are many times larger than a typical yeast cell;
cells 15 cm in diameter can be grown in the laboratory[27].
Waves of nuclear division are observed in these multinucle-
ate plasmodia[28,29], and as we have shown, it is possible
that these waves exhibit weak turbulence. Note that weak
turbulence in the cell cycle would mean irregular oscillations
of CDK. But for a normal cell cycle, large-amplitude oscil-
lations of CDK are essential; CDK activity must drop below
a certain threshold for nuclei to exit mitosis and divide.
Therefore, hypothetically, weak turbulence in syncytial plas-
modia might lead to mitotic arrest of certain nuclei in the
plasmodium.

FIG. 7. Breathing periodic structures.l =3.5 cm; other param-
eters, as well as the time and space spans, are the same as in Fig. 2.

FIG. 8. Bifurcation diagram of a cell cycle model. Rate con-
stantski are in units min−1, k1=0.002,k2=0.053,k3=0.01, k4=2,
k5=0.05, k6=0.04, k7=1.5, k8=0.19, k9=0.64, k10=0.005, k11

=0.07, andk12=0.08. Other parameters areP=0.15, J1=0.05, J2

=0.01.

FIG. 9. Turbulence in a cell cycle model. Space time plot ofY
field in Eqs.(4)–(8). The space and time spans areL=1.28 cm and
T=2500 min. The pattern was obtained by recordingYsxd with a
time intervalt=5 min.
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Our argument for the stability of fast oscillations against
wave number instability is valid only close to the Hopf bi-
furcation point. Therefore, near the onset of a cyclic fold
bifurcation, a more quantitative characterization of both fast
and slow oscillations against wave number instability is
highly desirable. Another problem for the future is to simu-
late wave morphologies in two spatial dimensions[30].

APPENDIX: COEFFICIENTS OF THE CGLE FOR A
GLYCOLYTIC MODEL WITH SUBSTRATE INHIBITION

In this appendix, following standard procedures in Ref.
[1], we will calculate coefficients of CGLE for the glycolytic
model. For a convenience we assumeQ;1 in Eqs.(1)–(3).
First, let us find uniform steady-state solutionsa0 andg0:

g0 = m/ks, sA1d

a0 =
K4s− 2m + sd + g0

4s− 2sm + sid + sd
c̃

−
Î− 4ã2 + 4Lsãb̃ + s1 + g0d2s2b̃2

s1 + g0dc̃
, sA2d

where ã=K4m+g0
4sm+sid, b̃=sK4+g0

4d, and c̃=2fK4sm−sd
+g0

4sm+si −sdg. Next we perform a linear stability analysis
of sa0,g0d against small fluctuationsda ,dg~expsiqx+ iltd.
At the critical wave numberqcr=0, we obtain the character-
istic equation

l2 + sa1 + a2 + ksdl + a1ks = 0. sA3d

In Eq. (A3), a1 anda2 are given by

a1 =
ss1 + g0d2fL + 2La0 + s1 + a0d2s1 + g0d2g

fL + s1 + a0d2s1 + g0d2g2 , sA4d

a2 =
4K4g0

3si

sK4 + g0
4d2 −

2sLa0s1 + a0ds1 + g0d
fL + s1 + a0d2s1 + g0d2g2 . sA5d

Let us define a critical value for the bifurcation parameter
si =si,cr such that

a1 + a2 + ks ; 0. sA6d

Equation(A6) is the condition for a Hopf bifurcation where
the characteristic equation has pure imaginary solutions,l0
= ± iÎa1ks.

Let m be defined bym=ssi −si,crd /si,cr. We develop the
Jacobian matrixL of Eqs.(1)–(3) in powers ofm:

L = L0 + mL1 + ¯ . sA7d

At m=0 the Jacobian is given by

L0 = U− a1 a2

a1 − ks − a2
U . sA8d

We find the rightu0 and left u0
* eigenvectors ofL0 corre-

sponding tol0:

u0 = 1− 1 + iÎ ks

a1

1
2 , sA9d

u0
* =

1

2
S− iÎa1

ks
,1 − iÎa1

ks
D . sA10d

We find, further,

L1 =
4K4g0

3si,cr

sK4 + g0
4d2U0 − 1

0 1
U . sA11d

Let us first find c0 in the CGLE. It is given by c0
=Iml1/Rel1, where

l1 = u0
*L1u0 =

2K4g0
3

sK4 + g0
4d2si,cr. sA12d

We see thatl1 is a real number; therefore,c0=0. Now fol-
lowing again[1], we findc1:

D = UDa 0

0 Dg
U , sA13d

d8 + id9 = u0
*Du0, sA14d

c1 = d9/d8 =Îa1

ks
SDa − Dg

Da + Dg
D . sA15d

The calculation ofc2 is a little more tedious. We need to find
[1]

V+ = V̄− = − sL0 − 2l0d−1M 0u0u0, sA16d

V0 = − 2L0
−1M 0u0ū0, sA17d

g = g8 + ig9

= − 2u0
*M 0u0V0 − 2u0

*M 0ū0V − 3u0
*N0u0

*u0
* ū0.

sA18d

The parameterc2 in the CGLE is given byc2=g9 /g8. We find
that c2= g̃9 / g̃8, where

g̃8 = − 3kshksma2s2ma2 − magd + a1fs2ma2 − magdsma2 − ma,g

+ mg2d − kssna2g − 3na3dg + 3a1
2snag2 − na2g + na3 − ng3dj,

sA19d

g̃9 =Î ks

a1
h10ks

2ma2
2 + a1kss14ma2

2 − 14ma2ma,g + mag
2

+ 10ma2mg2 + 9ksna3d + a1
2f4sma2 − ma,g + mg2d2

+ 3kssnag2 − 2na2g + 3na3dgj. sA20d

In the above expressions,

ma2 = S ]2fsa,gd
]a2 D

a0,g0

, mag = S ]2fsa,gd
]a]g

D
a0,g0

,
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mg2 =
2s3K8g0

2 − 5K4g0
6dsi,cr

sK4 + g0
4d3 − S ]2fsa,gd

]g2 D
a0,g0

,

na3 = S ]3fsa,gd
]a3 D

a0,g0

, na2g = S ]3fsa,gd
]a2]g

D
a0,g0

,

nag2 = S ]3fsa,gd
]a]g2 D

a0,g0

, ng3 = S ]3fsa,gd
]g3 D

a0,g0

.

To save space we do not present here cumbersome expres-
sions for these derivatives.

For parameters in Fig. 1 we find thatsi,cr=1.282 andc2

<2.21. From Eq.(A15) we see that ifDa=Dg, c1=0. There-
fore, 1+c1c2.0 for parameters used in this paper. IfDa=0,
Eq. (A15) gives the minimal valuec1=−0.47. In this case,
1+c1c2<−0.03; therefore, wave number instability is pos-
sible. However, turbulence must be weak as the parameters
are very close to the stability condition 1+c1c2.0 [2]. A
stronger wave number instability is possible—for example,
for m=0.28 s−1, K=12, Da=5310−7 cm2/s, Dg=1
310−5 cm2/s, and other parameters are the same as in Fig. 1.
In this case, we find thatsi,cr<1.095 and 1+c1c2=−0.416.
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